Células microglia, la primera y principal línea de defensa del sistema nervioso central /  Imagen: Wikipedia

Desvelado el mecanismo por el que las células inmunes del cerebro eliminan las neuronas muertas

.

Cuando llegamos a la adolescencia, nuestro cerebro contiene la mayoría de las neuronas que tendremos durante el resto de la vida. Sin embargo, en el cerebro adulto existen aún unas zonas en las que se siguen generando nuevas neuronas. Muchas de estas nuevas células (80%) mueren antes de completar su maduración y diferenciación. Por eso, en estas regiones es necesaria la presencia de células inmunes especializadas, llamadas microglía, que actúan como “centinelas” y que son capaces de eliminar las células muertas y proteger al cerebro.

.

CSIC / Ahora un estudio internacional desarrollado por investigadores del Consejo Superior de Investigaciones Científicas (CSIC) y del Salk Institute de Estados Unidos ha identificado los mecanismos celulares específicos que utiliza la microglía para eliminar neuronas muertas y moribundas del cerebro. En estos mecanismos juegan un papel crucial los receptores TAM, tanto en condiciones normales como en procesos patológicos. Estos receptores podrían constituir dianas terapéuticas para el tratamiento de enfermedades neurodegenerativas o procesos inflamatorios crónicos, como el Parkinson. El estudio ha sido publicado en la revista Nature.

El estudio muestra que los receptores TAM en las células microglías juegan un papel crucial para eliminar neuronas muertas y defectuosas 

Hace dos décadas, el laboratorio del doctor Greg Lemke en The Salk Institute describió que las células inmunes muestran en su superficie los receptores TAM. Dos de estos receptores, llamados Axl y Mer, están presentes en células inmunes llamadas macrófagos y las ayudan a actuar como “recolectores de basura”, identificando y eliminando más de 100 millones de células que mueren en el cuerpo humano cada día.

En este estudio, el equipo de investigadores se preguntó si los receptores Axl y Mer ejercerían el mismo papel en el cerebro, según explica la investigadora del CSIC Paqui González Través, del Instituto de Investigaciones Biomédicas Alberto Sols, en Madrid, centro mixto del CSIC y la Universidad Autónoma de Madrid.

La microglía son los macrófagos residentes en el sistema nervioso central y constituyen aproximadamente el 10 % de las células presentes en el cerebro, según señala González Través, participante en el estudio y que ha trabajado en The Salk Institute con una beca de investigación Marie Curie de la Comisión Europea.

Células muertas (puntos verdes) en una de las zonas neurogénicas (en azul, todas las células) del cerebro de un ratón deficiente en Axl y Mer. En ratones normales no se observa ninguna señal verde / CSIC

Células muertas (puntos verdes) en una de las zonas neurogénicas (en azul, todas las células) del cerebro de un ratón deficiente en Axl y Mer. En ratones normales no se observa ninguna señal verde / CSIC

.

Los investigadores han “eliminado Axl y Mer” de la microglía de los ratones y han observado que se producía una enorme acumulación de células muertas, solo y exclusivamente en zonas muy concretas del cerebro en las que se generan nuevas neuronas (llamadas zonas de neurogénesis). La mayoría de las nuevas neuronas generadas durante la neurogénesis mueren durante el proceso de maduración y son reconocidas y eliminadas de form eficiente por la microglía. Por eso, en un “cerebro normal” es muy difícil detectar estas células muertas.

Axl y Mer no sólo ayudan a la eliminación de células muertas, también identifican a las defectuosas o disfuncionales

González Través explica que: “cuando examinamos este proceso detenidamente y seguimos la maduración de las nuevas neuronas, observamos que en los ratones en los que se eliminaron Axl y Mer de la microglía, el número de nuevas neuronas que migraban y se integraban en el bulbo olfatorio (donde se halla la función olfativa de los animales) aumentaba enormemente en comparación con los animales de referencia”.

“Estos resultados sugieren que Axl y Mer no sólo ayudan a la eliminación de células muertas sino que también podrían ser capaces de identificar neuronas que aun estando vivas, son defectuosas o disfuncionales”, explica González Través.

.

La función de los receptores TAM en procesos patológicos

Por último, el equipo de investigadores realizó una serie de experimentos para intentar entender el papel de los receptores TAM en procesos patológicos. Para ello, los investigadores analizaron un modelo animal de la enfermedad de Parkinson. Este modelo produce en su sistema nervioso central una proteína asociada con una forma hereditaria de Parkinson y como consecuencia se produce una degeneración del cerebro.

“En este modelo, hemos observado un aumento enorme de la expresión de Axl, lo que coincide con otras publicaciones describiendo a Axl como un indicador de la presencia de inflamación en los tejidos”, añade la investigadora. “Sin embargo, lo más sorprendente fue que al eliminar Axl y Mer de la microglía de los ratones con Parkinson, en lugar de observar un empeoramiento de estos animales, se observó un aumento de la longevidad de los mismos. Probablemente, esto se deba a que Axl y Mer, en microglía, ayudan a identificar y destruir neuronas que están enfermas y no son totalmente funcionales.

Durante la enfermedad, probablemente hay un mayor número de estas neuronas enfermas por lo que Axl y Mer podrían estar acelerando la eliminación de las mismas y en consecuencia, su presencia podría contribuir a un empeoramiento de la enfermedad”, concluye González Través.

.

 

Referencia:

Lawrence Fourgeaud, Paqui G. Través, Yusuf Tufail, Humberto Leal-Bailey, Erin D. Lew, Patrick G. Burrola, Perri Callaway, Anna Zagórska, Carla V. Rothlin, Axel Nimmerjahn y Greg Lemke. TAM receptors regulate multiple features of microglial physiology. Nature. Doi: 10.1038/nature17630

.