Estudio del Universo temprano a través de rayos gamma

Imagen: Ilustración artística de un brillante brote de rayos gamma en una región de formación estelar. La energía de la explosión se proyecta en dos chorros estrechos con direcciones opuestas. Créditos: NASA/Swift/Mary Pat Hrybyk-Keith y John Jones (Wikimedia)

Descubren una nueva forma de usar destellos de rayos gamma para calibrar la expansión del Universo

.

Los destellos de rayos gamma o gamma ray bursts (GRBs) son los eventos más energéticos conocidos en el Universo. Aunque a ciencia cierta no se sabe qué son, se conoce que de repente explotan y que la cantidad de energía que arrojan es absolutamente increíble.

UNAM/DICYT – Su energía es equivalente a la que emitirá nuestro Sol durante toda su vida –10 mil millones de años–, pero con una duración de segundos, minutos u horas. Por eso, es posible verlos a distancias y tiempos tan lejanos como 13 mil millones de años, a sólo 500 millones de años del Big-Bang, cuando el cosmos era alrededor de 10 veces más pequeño de lo que es ahora. Por ello, también se usan como trazadores cosmológicos.

Xavier Hernández, del Instituto de Astronomía de la UNAM
Xavier Hernández, del Instituto de Astronomía de la UNAM

Un equipo internacional de investigadores, donde participa Xavier Hernández, del Instituto de Astronomía de la UNAM, desarrolló una nueva manera de usar las explosiones más poderosas del Universo, para calibrar su expansión.

Los GRBs pueden tener diferentes orígenes, por ejemplo, jets asociados a acreción sobre un hoyo negro producto de una estrella súper masiva que colapsa, dos estrellas de neutrones que chocan entre sí o una de ellas que cae en uno de esos agujeros. Y hasta ahora se habían estudiado en su conjunto, explicó.

Hernández, junto con el equipo de colaboradores que lidera María Dainotti, Marie Curie Fellow en la Universidad de Stanford, realizó un análisis que muestra que una población específica de esas explosiones puede ser utilizada para proporcionar una medición independiente en la escala de distancias cósmicas.

Su energía es equivalente a la que emitirá nuestro Sol durante toda su vida, 10 mil millones de años

Dado que los destellos de rayos gamma son más brillantes que las supernovas, esta nueva técnica tiene el potencial para extender la “regla” cósmica a distancias mayores de lo que era hasta ahora posible.

El estudio del Universo muy temprano es fundamental para comprender los detalles de la evolución cosmológica, por ejemplo, las características de la energía oscura desde la época de la reionización (después de la época en que comenzaron a formarse las galaxias) hasta la actualidad.

.

Las dificultades de la medición

Si se conocen objetos muy alejados, a qué distancia se encuentran, y si se alejan o se acercan, se pueden usar para trazar la expansión del cosmos, yendo hacia épocas muy antiguas, abundó. “Eso, en principio, permitiría conocer de qué está hecho el Universo o cómo funciona la gravedad”.

No obstante, conocer el brillo intrínseco de los GRBs es complicado, y por lo tanto, se dificulta saber a qué distancia están. “Si en la noche oscura veo una lucecita, podría tratarse de una cerilla encendida a 10 metros, una linterna a dos manzanas o el faro de una moto a dos kilómetros”, explicó.

Se ha encontrado una tendencia a que los destellos que brillan más, duren menos, pero con mucha dispersión

Si se sabe cuánto brilla intrínsecamente un objeto, comparándolo con su brillo aparente, se puede saber la distancia a la que se ubica. Por eso, se han tratado de hacer correlaciones para estimar el brillo intrínseco en función de que éste se correlacione con otra propiedad, por ejemplo, la duración; es decir, de cuánto brillo tuvo anteayer, ayer, hoy y mañana.

Así, se ha encontrado una tendencia a que los destellos que brillan más, duren menos, pero con mucha dispersión, es decir, grandes variaciones. A esto se suma que el origen de los GRBs es diverso. Por eso, estudiarlos en su conjunto era como tratar de correlacionar cuántas veces tose alguien por minuto, contra cuán enfermo está, sin importar el motivo: alergia al polen, catarro o enfisema. Y aunque sí se presenta cierta correlación, de nuevo la dispersión sería muy grande.

En este estudio “lo que hicimos fue tratar de aislar un tipo específico de objetos”: los de mayor duración –por lo menos un par de días– para tener mayor oportunidad de darles seguimiento, los que no estuvieran asociados a supernovas y de los que se tuvieran los mejores datos, sin importar su distancia, para evitar sesgos observacionales.

Utilizaron los datos del satélite SWIFT de la NASA, que rápidamente apunta a distintas zonas del cielo y detecta los GRBs, y una muestra lo más homogénea posible, que se redujo de 170 destellos iniciales a sólo 42, “suficientes para comenzar a ver correlaciones entre distintos parámetros”.

Descubrieron que mientras más energía suelta una explosión de rayos gamma en su primera fase, más le queda para las subsecuentes

Xavier Hernández y sus colegas descubrieron que mientras más energía suelta una explosión de rayos gamma en su primera fase, más le queda para las subsecuentes.

Así, entre más energético es el destello inicial, más energía hay en la siguiente fase. De ese modo, encontraron un “plano fundamental” con muy poca dispersión, donde tres parámetros muestran una fuerte correlación.

Eso, quizá, tenga que ver con que después de que la zona interna de una estrella colapsa y forma un hoyo negro, sus zonas más externas van cayendo durante horas al agujero, emitiendo radiación menos energética, en rayos X.

.

Dejar comentario

Deja tu comentario
Pon tu nombre aquí